S.N.J.B.'s K.K.H.A. Arts, S.M.G.L. Commerce \& S.P.H.J. Science College,
 Neminagar, Chandwad, Dist. Nashik
 Department of Mathematics
 NUMERICAL ANALYSIS

Practical 1: ERRORS

1. Round off the numbers $0.987250,40.0468,0.467268,2.26357,6.39458,47.57105,0.50019$, $0.0004261,61.255$ correct to four significant figures and find percentage error for the first number.
2. Round off the numbers $3.3465827,5.375829,54.2549757,0.00457328$ correct to four decimal places and the numbers $4.2368,1.765,2.435,12.975$ correct to two decimal places.
3. Find relative error of the number 11.426
4. Find relative error of the number $\frac{5}{7}$ whose approximate value is 0.714
5. Three approximate value of number $1 / 6$ are given as $0.165,0.166$, and 0.167 which of these three is the best approximation?
6. An approximate value of e is 2.1795518 and its true value is given by $x=2.17821828$. Find relative error.
7. An approximate value of π is 3.14278152 and its true value is 3.14159265 . Find relative error.
8. Find the sum of the numbers $0.1532,15.45,0.000354,305.1,8.12,143.3,0.0212,0.643$ and 0.1734 where each number is correct to digits given. Estimate the errors in the sum.
9. Find the product of two numbers $56.54 \& 12.4$ which are both correct to the significant digits given.
10. Find the quotient; $\mathrm{q}=\frac{x}{y}$ where $\mathrm{x}=5.647 \& \mathrm{y}=2.52$ Correct to the given digits. Find also the relative error in results.

S.N.J.B.'s K.K.H.A. Arts, S.M.G.L. Commerce \& S.P.H.J. Science College,

Neminagar, Chandwad, Dist. Nashik

Department of Mathematics
 NUMERICAL ANALYSIS

Practical 2: Solutions of Algebraic and Transcendental Equations

1. Using bisection method find root of the equation $x^{3}-5 x+3=0$ correct upto three decimal places.
2. Find root of the following equations by using bisection method.
i. $\quad e^{-x}=\sin x$
ii. $\quad x^{3}-x-1=0$
ii. iii. $x^{2}-5 x+3=0$
iv. $x^{3}-3 x-5=0$
3. Using false position method find root, correct to three decimate places of the equation $x^{3}-x-4$ $=0$.
4. Find the root of the equation $x^{3}-x^{2}-1=0$ using false position method.
5. Evaluate the following by using false position method $\sqrt[4]{72}$.
6. Find an approximate root of the equation $x^{3}-2 x-5=0$ between $\mathrm{x}=2 \& \mathrm{x}=2.5$ using false position method correct upto two decimal places(perform three iterations)
7. Using iteration method find a root, correct to 4 significant figures of the following equation, $5 x^{3}-$ $20 x+3=0$.
8. Find the root of the equation $3 x=\cos x+1$ using iteration method and Aitken's Δ^{2}-process, take $x_{0}=\frac{\pi}{2}$
9. Find $\sqrt{10}, \sqrt[4]{72}, \sqrt[3]{13}, \sqrt[4]{74}, \sqrt[3]{19}$ by using Newton-Raphson Method.
10. Solve $\log x=\cos x$ by Newton-Raphson Method.
11. Using Newton-Raphson Method find root of the following equations
i. $x^{2}+5 x+1=0$
ii. $x^{5}+5 x+1=0$ Between $x=-1 \& x=0$.
iii. $x^{3}-x-4=0$

S.N.J.B.'s K.K.H.A. Arts, S.M.G.L. Commerce \& S.P.H.J. Science College,

Neminagar, Chandwad, Dist. Nashik
Department of Mathematics
NUMERICAL ANALYSIS

Practical No.3: Interpolation

1. Find the form of the function given.

\boldsymbol{x}	0	1	2	3	4
$\boldsymbol{f}(\boldsymbol{x})$	3	6	11	18	27

2. Use Lagrange's interpolation formula to express the function

$$
\frac{3 x^{2}+x+2}{(x-1)(x-2)(x-3)}
$$

as sums of partial fractions.
3. The population of a town in decimal census is given below. Estimate the population for the year 1955 .

Year	1921	1931	1941	1951	1961
Population (in thousands)	46	66	81	93	101

4. Find missing term in the following table.

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	1	3	9	-	81

5. Find the cubic polynomial which takes the values $y(1)=24, y(3)=120$,
$y(5)=336, y(7)=720$. Hence find $y(8)$.
6. Find $\log _{10} 301$ by using following data.

\boldsymbol{x}	300	304	305	307
$\boldsymbol{y}=\log _{\mathbf{1 0}} \boldsymbol{x}$	2.4771	2.4829	2.4843	2.4871

7. Construct divided difference table for the values

\boldsymbol{x}	0	1	4	5
\boldsymbol{y}	8	11	68	123

8. Find $y(x)$ as a polynomial in x by using following table.

\boldsymbol{x}	-1	0	3	6	7
\boldsymbol{y}	3	-6	39	822	1611

9. Express $f(x+n h)$ in terms of $f(x)$ where ' h ' is interval of differencing.
10. From the following data find y when $\mathrm{x}=1.45$

\boldsymbol{x}	1	1.2	1.4	1.6	1.8	2
\boldsymbol{y}	0	-0.112	-0.016	0.336	0.992	2

11. Find $\sin 38^{\circ}$ by using following data

\boldsymbol{x}°	15	20	25	30	35	40
$\boldsymbol{\operatorname { s i n }} \boldsymbol{x}^{\circ}$	0.2588	0.3420	0.4226	0.5	0.5735	0.6427

12. Find the third divided difference with arguments $2,4,9,10$ of the function $f(x)=x^{3}-2 x$.
13. Find the polynomial satisfied by $(-4,1245),(-1,33),(0,5),(2,9)$ and $(5,1335)$ using Newton's general interpolation formula.
14. Using Newton divided difference formula find the value of $f(15)$ from the following data.

\boldsymbol{x}	4	5	7	10	11	13
$\boldsymbol{y}(\boldsymbol{x})$	48	100	294	900	1210	2028

15. If l_{x} represents the number of persons living at age x in a life table, find l_{x} for $\mathrm{x}=35$. Given $l_{20}=512, l_{30}=390, l_{40}=360, l_{50}=243$.

S.N.J.B.'s K.K.H.A. Arts, S.M.G.L. Commerce \& S.P.H.J. Science College,

Neminagar, Chandwad, Dist. Nashik
Department of Mathematics
NUMERICAL ANALYSIS

Practical No. 4: Least Square: Curve Fitting Procedures

1. Find the function of the type $y=a x^{b}$ to the following data.

\boldsymbol{x}	2	4	7	10	20	40	60	80
\boldsymbol{y}	43	25	18	13	8	5	3	2

2. Find the best values of a, b and c so that parabola $y=a+b x+c x^{2}$ fits the data

\boldsymbol{x}	1	1.5	2	2.5	3	3.5	4
\boldsymbol{y}	1.1	1.2	1.5	2.6	2.8	3.3	4.1

3. Determine the best linear fit, to the following data points,

\boldsymbol{x}	5	10	15	20	25
\boldsymbol{y}	15	19	23	26	30

4. Determine the best quadratic polynomial to the following data points.

\boldsymbol{x}	1	2	3	4
\boldsymbol{y}	6	11	18	27

5. Find a curve $y=c x^{d}$ to the data

\boldsymbol{x}	2.2	2.7	3.5	4.1
\boldsymbol{y}	65	60	53	50

6. Find a second degree polynomial by using following data.

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	1	0	3	10	21

7. Find the exponential curve $y=c e^{d x}$ to the following data

\boldsymbol{x}	0	2	4
\boldsymbol{y}	5.012	10	31.62

8. Fit a power function $y=a x^{b}$ to the following data.

\boldsymbol{x}	1	2	3	4	5
\boldsymbol{y}	0.5	2	4.5	8	12.5

9. Fit a straight line of the form $y=a+b x$ to the data

\boldsymbol{x}	0	2	5	7
\boldsymbol{y}	-1	5	12	20

10. Fit a polynomial of second degree to the following data

x	0	1	2
y	1	6	17

S.N.J.B.'s K.K.H.A. Arts, S.M.G.L. Commerce \& S.P.H.J. Science College,

Neminagar, Chandwad, Dist. Nashik

Department of Mathematics
 NUMERICAL ANALYSIS

Practical No. 5: Numerical Differentiation and Integration

1. Evaluate $\int_{0}^{1} x^{2} d x$ using Trapezoidal rule and Simpson's $\frac{1}{3}^{\text {rd }}$ rule.
2. Find the value of $\int_{0}^{6} \frac{1}{\sqrt{x+1}} d x$ by Simpson's $\frac{3}{8}^{\text {th }}$ rule.
3. Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ with $h=\frac{1}{6}$ by Simpson's $\frac{1}{3}^{\text {rd }}$ rule and Simpson's $\frac{3}{8}^{\text {th }}$ rule.
4. Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by Trapezoidal rule and Simpson's rule. Hence find approximation to the value of π.
5. Calculate the approximate value of $\int_{0}^{\pi / 2} \sin x d x$ by Trapezoidal rule.
6. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $\mathrm{x}=1.2$ by using following table.

\boldsymbol{x}	1.0	1.2	1.4	1.6	1.8	2.0	2.2
\boldsymbol{y}	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

7. Evaluate $\int_{0}^{1} \cos x d x$ by Trapezoidal rule, take $\mathrm{h}=0.2$.
8. Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ with $h=0.2$ by Simpson's $\frac{3}{8}{ }^{\text {th }}$ rule
9. Find the value of $\frac{d y}{d x}$ at $x=5$ from the following data.

x	3	4	5	6	7	8
y	1.0986	1.3863	1.6094	1.7918	1.9459	2.0794

10. The velocity of a car at intervals of 2 mint are given below,

Time in mint.	0	2	4	6	10	12
Velocity in $\mathrm{km} / \mathrm{hr}$	0	22	30	27	7	0

Apply Simpson's rule to find the distance covered by the car.

S.N.J.B.'s K.K.H.A. Arts, S.M.G.L. Commerce \& S.P.H.J. Science College,

Neminagar, Chandwad, Dist. Nashik

Department of Mathematics
 NUMERICAL ANALYSIS

Practical No. 6: Numerical Solution of First Order Differential Equation

1. Given the differential equation $\frac{d y}{d x}=x^{2}+y ; y(4)=4$. Obtain $y(4.1)$ and $y(4.2)$ by Taylor's Series Method.
2. (a) Solve by Euler's Method.

$$
\frac{d y}{d x}=x+y, y(0)=0 \text { Choose } h=0.1 \text { and compute } y(0.4) \& y(0.6)
$$

(b) do the same with $h=0.2$
3. Given that,

$$
\frac{d y}{d x}=x^{2}+x y, y(0)=1, \text { determine } y(0.02) \& y(0.04) \text { using modified Euler's Method. }
$$

4. Use Runge - Kutta fourth order formula to find $y(0.1)$ correct upto four decimal places for the differential equation $\frac{d y}{d x}=y-x, y(0)=2$ take $h=0.1$.
5. Use Runge - Kutta second / fourth order formula to find $y(1)$ if

$$
\frac{d y}{d x}=\frac{x^{2}+y^{2}}{10}, y(0)=1 . \text { Take } \mathrm{h}=1
$$

6. Using Taylor's series method solve $\frac{d y}{d x}=x+y, y(1)=0$, numerically upto $\mathrm{x}=1.2$ with $\mathrm{h}=0.1$.
7. Obtain $y(0.2)$ by using Euler's Method for the differential equation $\frac{d y}{d x}=-2 y ; y(0)=1$. Take $\mathrm{h}=0.1$
8. Obtain $y(0.1)$ by Taylor's series method for the differential equation $\frac{d y}{d x}=1+x y, y(0)=1$.
9. Find $y(1.5)$ and $y(2)$ by Modified Euler's Method for the differential equation

$$
\frac{d y}{d x}=2+\sqrt{x y} ; y(1)=1,
$$

Take $\mathrm{h}=0.5$
10. Compute $y(0.1)$ by Taylor's series method for the differential equation $\frac{d y}{d x}-1=x y ; y(0)=1$.

